If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3s^2-30s-50=0
a = -3; b = -30; c = -50;
Δ = b2-4ac
Δ = -302-4·(-3)·(-50)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{3}}{2*-3}=\frac{30-10\sqrt{3}}{-6} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{3}}{2*-3}=\frac{30+10\sqrt{3}}{-6} $
| 9u−14=67 | | 100-(x/2)=x+31 | | 12(5x-8)=-156 | | 10y-20=-6y+4 | | 2.5x−4=0.25(16x−1) | | 36+x=81 | | 8=-6/5t | | y/8−1=2 | | k/7+56=60 | | (3x-12)+(4x+20)=113 | | r/8+13=16 | | 2(x-5)=5x+1 | | 3x-4x+6=-(6+x) | | -5/2x=-14 | | 18+6w=60 | | 4x-2=2(2x+1) | | (3x+12)+(4x-20)=113 | | 8x-4x=4(2x+1) | | (3x+12)º+(4x-20)º=113º | | 3x-63=(2x+2)° | | `18t-4=12t+20` | | 6−5j=−94 | | -9=6/5t | | -2x+3x+5=-(-x-5) | | -4n-7-2n=-13 | | 2(x+3)=4x-8+x | | 4/3w=-10 | | 0.75(12x–40)+3x=–6x–0.25(8x+24) | | 48=8-3x | | -3(t-5)=14 | | 55=3v=10 | | 7x-2(7)=-17 |